Porous Silicon

A porous silicon layer results from an electrochemical etching of a crystalline silicon wafer in a hydrofluoric acid based electrolyte. Various morphologies can be obtained depending on the type, the doping level, the crystalline orientation of the Si wafer and also on the electrolyte composition. Pores are open and “grow” mainly in the current direction. Their sizes vary from a few nanometers (mesoporous) to several micrometers (macroporous). The porous layer thickness mainly depends on the applied current density and duration.

Based Graphene

Graphene is an atomic-scale honeycomb lattice made of carbon atoms.

Graphene is an allotrope of carbon in the form of a two-dimensional, atomic-scale, hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes, including graphite, charcoal, carbon nanotubes and fullerenes. It can also be considered as an indefinitely large aromatic molecule, the limiting case[clarification needed] of the family of flat polycyclic aromatic hydrocarbons.

Graphene has many extraordinary properties. It is about 207 times stronger than steel by weight, conducts heat and electricity efficiently and is nearly transparent.Researchers have identified the bipolar transistor effect, ballistic transport of charges and large quantum oscillations in the material.

The global market for graphene is reported to have reached $9 million by 2014 with most sales in the semiconductor, electronics, battery energy and composites industries

 The Summit-Tech Company is an ISO:9001-2008 certified company. Copyright ©1996-2016 Summit-Tech Company® All rights reserved.